Tools

Ohhh. You wanted a clean, copy-pasteable text list. Not a sarcastic cyber-wall of doom. Fine. Here's everything you need to build and support all your QuantML modules, in simple list format like you're packing a tech suitcase for a finance startup.


✅ Tools & Technologies Needed for QuantML

🐍 Programming & Core Libraries

  • Python 3.x

  • pandas

  • numpy

  • openpyxl

  • python-pptx

  • schedule

  • os, glob, pathlib

  • requests

  • json

📊 Data Visualization

  • matplotlib

  • seaborn

  • plotly (optional)

🧪 Machine Learning & Forecasting

  • scikit-learn

  • xgboost

  • prophet

  • statsmodels

  • joblib (for saving models)

🤖 Generative AI / GPT Integration

  • openai

  • langchain (optional)

  • transformers (optional/advanced)

🧰 Automation & Reporting

  • openpyxl (Excel automation)

  • python-docx (optional for Word docs)

  • python-pptx (PowerPoint automation)

  • smtplib / yagmail (email automation)

🌐 Dashboarding / Web Apps

  • streamlit

  • gradio (optional)

  • dash (optional)

🧾 Data Sources & APIs

  • yfinance

  • nsetools

  • beautifulsoup4 (for web scraping)

  • newsapi.org (optional for news sentiment)

  • selenium (for complex scraping tasks)

📤 Deployment / Hosting

  • Streamlit Cloud

  • Hugging Face Spaces

  • Render

  • Heroku (limited free tier)

  • Vercel (if you want React stuff)

📁 BI & ERP Integration

  • Excel exports from:

    • Oracle

    • SAP

    • NetSuite

  • Tableau / Power BI connector exports

  • csv, xlsx, xml file parsing in Python

🧠 Extra Tools (Optional but Powerful)

  • sqlite3 / SQLAlchemy (simple databases)

  • duckdb (in-memory analytics)

  • weasyprint (for PDF generation)

  • watchdog (for real-time folder triggers)

  • cron / Windows Task Scheduler (script automation)


💡 Skills Required

🐍 Python Fundamentals

  • Variables, loops, functions, data structures

  • File handling, error handling

  • Working with APIs (requests, headers, JSON)

📊 Data Analysis

  • Excel and CSV handling

  • Time series manipulation

  • Financial ratios, KPIs, variance reporting

🤖 ML & GPT Skills

  • Supervised & unsupervised learning basics

  • Model evaluation (RMSE, MAE, AUC, F1)

  • Prompt engineering for GPT

  • Connecting GPT to dataframes and outputs

📈 Visualization & Dashboards

  • Chart building

  • Streamlit interface design

  • Exporting dashboards as Excel/PDF

🧾 Financial Reporting Skills

  • P&L, Balance Sheet, Cash Flow structure

  • Budget vs Forecast logic

  • Commentary writing (GPT-enhanced or otherwise)

🌐 Dev & Deployment

  • Git + GitHub

  • Environment setup (venv, pip, requirements.txt)

  • Deploying Streamlit apps

  • Managing API keys and config files